These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vertical profiles and distributions of aqueous endocrine-disrupting chemicals in different matrices from the Pearl River Delta and the influence of environmental factors. Author: Gong J, Ran Y, Zhang D, Chen D, Li H, Huang Y. Journal: Environ Pollut; 2019 Mar; 246():328-335. PubMed ID: 30557807. Abstract: The occurrence and distributions of selected endocrine-disrupting chemicals (EDCs), along with related environmental factors, were investigated in two rivers and six reservoirs in the Pearl River Delta. The vertical profiles of aqueous 4-tert-octylphenol (OP), 4-nonylphenol (NP), and estrone (E1) were constant, with little change in concentration between the surface and the river bottom, while higher aqueous concentrations of bisphenol A (BPA) were found in the bottom layers of the rivers. OP and NP in suspended particulate matter (SPM) were transferred from the surface to the bed layer, ultimately accumulating in the sediment. However, the particulate profiles of BPA and E1 both featured increases from the surface to the bottom layers and attenuation in the river bed. Dissolved oxygen (DO), water temperature, and pH were negatively correlated with the EDC concentrations, and negative relationships between DO and distribution coefficient (Kd) values for OP and NP were found as well. This indicated that these environmental parameters were primarily responsible for the EDC vertical distribution and SPM-water partitioning in the rivers. Positive relationships were observed between chlorophyll a and EDCs in the particulate phase, and the algae/water Kd values for EDCs in reservoirs were comparable to the SPM/water and sediment/water Kd values from the rivers. These results suggest that algae played an important role in regulating the distribution of EDCs in surface waters. Moreover, relationships between UV absorbance and EDCs revealed that π-π interactions were among the dissolved organic carbon (DOC)-EDC binding mechanisms and that DOC fractions with higher degrees of aromaticity and humification possessed higher affinities towards EDCs.[Abstract] [Full Text] [Related] [New Search]