These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protease effects on adenylate cyclase in potassium-depleted rabbit kidney.
    Author: Raymond KH, Holland SD, Hymer TK, McKinney TD, Katz MS.
    Journal: Am J Physiol; 1988 Nov; 255(5 Pt 2):F1033-9. PubMed ID: 3056038.
    Abstract:
    Potassium depletion in rabbits induces a renal concentrating defect in vivo and decreased hydrosmotic response to arginine vasopressin (AVP) in isolated cortical collecting tubules (CCT) perfused in vitro. The molecular basis of the AVP resistance in potassium depletion was investigated by comparing AVP-responsive adenylate cyclase activities in CCT from potassium-depleted and control rabbits. Vasopressin-responsive enzyme activity was impaired in CCT dissected from kidneys of potassium-depleted rabbits but not when kidneys were treated with collagenase to improve microdissection conditions. Potassium depletion also depressed parathyroid hormone (PTH)-stimulated adenylate cyclase activity in proximal straight tubules (PST) dissected from untreated but not collagenase-treated kidneys. Commercially available collagenase, which also contains other proteolytic enzymes, increased AVP-sensitive adenylate cyclase activity in control CCT, and trypsin treatment of CCT dissected without collagenase abolished the decrease in AVP-sensitive activity induced by potassium depletion. Inclusion of trypsin inhibitor during collagenase treatment of kidneys lowered AVP response in CCT from potassium-depleted rabbits. These results demonstrate that potassium depletion impairs hormone-sensitive adenylate cyclase of CCT (and PST) by a protease-sensitive mechanism.
    [Abstract] [Full Text] [Related] [New Search]