These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Carborane derivatives of 1,2,3-triazole depolarize mitochondria by transferring protons through the lipid part of membranes.
    Author: Rokitskaya TI, Khailova LS, Makarenkov AV, Shunaev AV, Tatarskiy VV, Shtil AA, Ol'shevskaya VA, Antonenko YN.
    Journal: Biochim Biophys Acta Biomembr; 2019 Mar 01; 1861(3):573-583. PubMed ID: 30562498.
    Abstract:
    Boron containing polyhedra (carboranes) are three-dimensional delocalized aromatic systems. These structures have been shown to transport protons through lipid membranes and mitochondria. Conjugation of carboranes to various organic moieties is aimed at obtaining biologically active compounds with novel properties. Taking advantage of 1,2,3-triazoles as the scaffolds valuable in medicinal chemistry, we synthesized 1-(o-carboranylmethyl)-4-pentyl-1,2,3-triazole (c-triazole) and 1-(o-carboranylmethyl)-4-pentyl-1,2,3-triazolium iodide (c-triazolium). Both compounds interacted with model lipid membranes and exhibited a proton carrying activity in planar bilayers and liposomes in a concentration- and pH-dependent manner. Importantly, mechanisms of the protonophoric activity differed; namely, protonation-deprotonation reactions of the triazole and the o-carborane moieties were involved in the transport cycles of c-triazole and c-triazolium, respectively. At micromolar concentrations, c-triazole and c-triazolium stimulated respiration of isolated rat liver mitochondria and depolarized their membrane potential, with c-triazole being more potent. In living K562 (human chronic myelogenous leukemia) cells, both c-triazolium and c-triazole altered the mitochondrial membrane potential as determined by a decreased intracellular accumulation of the potential-dependent dye tetramethylrhodamine ethyl ester. Finally, cell viability testing demonstrated a cytotoxic potency of c-triazolium and, to a lesser extent, of c-triazole against K562 cells, whereas non-malignant fibroblasts were much less sensitive. In all tests, the reference boron-free benzyl-4-pentyl-1,2,3-triazole showed little-to-no effects. These results demonstrated that carboranyltriazoles carry protons across biological membranes, a property potentially important in anticancer drug design.
    [Abstract] [Full Text] [Related] [New Search]