These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Discovery of novel quaternary ammonium compounds based on quinuclidine-3-ol as new potential antimicrobial candidates.
    Author: Bazina L, Maravić A, Krce L, Soldo B, Odžak R, Popović VB, Aviani I, Primožič I, Šprung M.
    Journal: Eur J Med Chem; 2019 Feb 01; 163():626-635. PubMed ID: 30562698.
    Abstract:
    Quaternary ammonium compounds (QACs) are amphiphilic molecules displaying a broad-spectrum of antibacterial activity. QACs are commonly used antiseptics in industrial, home and hospital settings. Given the emergence of the QAC-resistant bacteria, there is an urgent need to design new QACs with good antimicrobial activity, able to escape the host resistance mechanism. Therefore, a series of QACs derived from quinuclidine-3-ol and an alkyl chain of variable length (QOH-C3 to -C14), was designed and synthesized. The antimicrobial potential of the new monoquaternary QACs was surveyed against seventeen strains of emerging food spoilage and pathogenic microorganisms, including clinical multidrug-resistant ESKAPE isolates. The QOH-C14 proved to have the strongest antimicrobial activity. It was highly active against all pathogens tested, particularly against the Gram-positive bacteria with minimal inhibitory concentrations (MICs) ranging from 0.06 to 3.9 μg/mL, and fungi exerting the MIC90 between 0.12 and 3.9 μg/mL. The potency of QOH-C14, confirmed that alkyl chains are an important part of the structure with their lengths playing a critical role in bioactivity of these compounds. The atomic force microscopy images show the disruption of a cell membrane upon the treatment with QOH-C14. These results were additionally confirmed by flow cytometry and fluorescence microscopy. A relatively low toxicity toward healthy human cells underline that QOH-C14 has a potential as new QAC antimicrobial candidate.
    [Abstract] [Full Text] [Related] [New Search]