These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Robotic device shows lack of momentum enhancement for gymnotiform swimmers. Author: English I, Liu H, Curet OM. Journal: Bioinspir Biomim; 2019 Jan 23; 14(2):024001. PubMed ID: 30562723. Abstract: Many fish generate thrust by undulating one or multiple elongated fins while keeping their body straight. This propulsion mechanism has stimulated interest in both biology and bio-inspired marine propulsion because its maneuverability and efficiency at low speed. Analytical studies have found that a fin attached to a rigid flat body can produce substantially higher thrust compared to a fin without a body, three- to four-fold for natural swimmers. However, this momentum enhancement has not been confirmed experimentally. In this work, a robotic ribbon fin model with an adjustable-height body was used to test the momentum enhancement for gymontiform swimmers where the undulating fin runs along the ventral side of the body. In a series of experiments, the force generated by the robotic device was measured as the body height of the robot, the undulating fin frequency and the flow speed were changed. It was found that the thrust generated by the ribbon fin is not affected by the presence of a body, thereby resulting in no momentum enhancement due to the fin-body interaction. These results suggest that if there is a benefit at a specific fin-body height ratio of the fishes, the momentum enhancement is not the reason. This result has broader implications in understanding the evolutionary adaption of undulatory fin propulsion and underwater vehicles designs.[Abstract] [Full Text] [Related] [New Search]