These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: B7-H3 promotes multiple myeloma cell survival and proliferation by ROS-dependent activation of Src/STAT3 and c-Cbl-mediated degradation of SOCS3.
    Author: Lin L, Cao L, Liu Y, Wang K, Zhang X, Qin X, Zhao D, Hao J, Chang Y, Huang X, Liu B, Zhang J, Lu J, Ge Q.
    Journal: Leukemia; 2019 Jun; 33(6):1475-1486. PubMed ID: 30573782.
    Abstract:
    B7-H3 (CD276) is broadly overexpressed by multiple human cancers. It plays a vital role in tumor progression and has been accepted as one of the inhibitory B7 family checkpoint molecules. To identify the functions and underlying mechanisms of B7-H3 in multiple myeloma, we analyzed B7-H3 expression in myeloma patients and used siRNAs and overexpression plasmid of B7-H3 to investigate its roles and downstream signaling molecules in myeloma cell lines. The results showed that surface expression of B7-H3 was upregulated in myeloma samples and cell lines. Lower expression of B7-H3 in myeloma cells was associated with better progression-free survival. Myeloma cell survival, drug resistance, and tumor growth could be promoted by B7-H3. The molecular basis for these functional roles of B7-H3 involved the activation of JAK2/STAT3 via redox-mediated oxidation and activation of Src. We further identified a STAT3-promoting signaling pathway by which oxidant-mediated Src phosphorylation led to secondary activation of the E3 ubiquitin ligase c-Cbl. Activated c-Cbl subsequently caused specific proteasomal degradation of SOCS3, a negative regulator of JAK2/STAT3. These data indicate B7-H3's important role in the activation of ROS/Src/c-Cbl pathway in multiple myeloma which integrates redox regulation and sustained STAT3 activation at the level of degradation of STAT3 suppressor.
    [Abstract] [Full Text] [Related] [New Search]