These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mouse serum protects against total body irradiation-induced hematopoietic system injury by improving the systemic environment after radiation.
    Author: Zhang J, Han X, Zhao Y, Xue X, Fan S.
    Journal: Free Radic Biol Med; 2019 Feb 01; 131():382-392. PubMed ID: 30578918.
    Abstract:
    Reactive oxygen species (ROS) play a critical role in total body irradiation (TBI)-induced hematopoietic system injury. However, the mechanisms involved in ROS production in hematopoietic stem cells (HSCs) post TBI need to be further explored. In this study, we demonstrated that hematopoietic system injury in mice radiated with TBI was effectively alleviated when the blood circulation environment was changed via the injection of serum from non-radiated mice. Serum injection increased the survival of radiated mice and ameliorated TBI-induced hematopoietic system injury through attenuating myeloid skew, increasing HSC frequency, and promoting the reconstitution of radiated HSCs. Serum injection also decreased ROS levels in HSCs and regulated oxidative stress-related proteins. A serum proteome sequence array showed that proteins related to tissue injury and oxidative stress were regulated, and a serum-derived exosome microRNA sequence assay showed that the PI3K-Akt and Hippo signaling pathways were affected in radiated mice injected with serum from non-radiated mice. Furthermore, a significant increase in cell viability and a decrease in ROS were observed in radiated lineage-c-kit+ cells treated with serum-derived exosomes. Similarly, an improvement in the impaired differentiation of HSCs was observed in radiated mice injected with serum-derived exosomes. Taken together, our observations suggest that serum from non-radiated mice alleviates HSC injury in radiated mice by improving the systemic environment after radiation, and exosomes contribute to this radioprotective effect as important serum active component.
    [Abstract] [Full Text] [Related] [New Search]