These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oral vaccination of tilapia against Streptococcus agalactiae using Bacillus subtilis spores expressing Sip. Author: Yao YY, Chen DD, Cui ZW, Zhang XY, Zhou YY, Guo X, Li AH, Zhang YA. Journal: Fish Shellfish Immunol; 2019 Mar; 86():999-1008. PubMed ID: 30590166. Abstract: Streptococcus agalactiae infections are becoming an increasing problem in aquaculture because of significant morbidity and mortality, which restricts the healthy development of tilapia aquaculture. To seek safe and effective prevention measures, a Bacillus subtilis GC5 surface displayed vaccine was prepared and applied orally in tilapia. The study first showed that recombinant spores can engraft in the tilapia intestine. Then, the effect of protection and the immune responses were evaluated. The results of ELISA showed that Sip-specific antibody in the sera of GC5-Sip-immunized fish can be detected after the first oral administration when compared to the phosphate buffer saline (PBS) control group, and the levels of specific IgM gradually strengthened with boosting, so does the specific antibody against bacteria, proving that humoral immunity was induced. Quantitative real-time PCR (qRT-PCR) results showed that the immune-related gene expression of the gut and spleen exhibited a different rising trend in the GC5-Sip group, revealing that innate immune response and local as well as systemic cellular immunity were induced. The outcome of fish immunized with GC5-Sip spores provided a relative percent survival (RPS) of 41.7% against S. agalactiae and GC5 group had an RPS of 24.2%, indicating that GC5-Sip was safe and effective in protecting tilapia against bacterial infection. Our study demonstrated that the oral administration of B. subtilis spores expressing Sip could cause an effective immune response and offer good resistance to bacterial infection. Our work may lead to the development of new ideas for immunoprophylaxis against S. agalactiae infection.[Abstract] [Full Text] [Related] [New Search]