These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ECT2/PSMD14/PTTG1 axis promotes the proliferation of glioma through stabilizing E2F1.
    Author: Zhi T, Jiang K, Xu X, Yu T, Zhou F, Wang Y, Liu N, Zhang J.
    Journal: Neuro Oncol; 2019 Mar 18; 21(4):462-473. PubMed ID: 30590814.
    Abstract:
    BACKGROUND: Epithelial cell transformation sequence 2 (ECT2) is upregulated in glioma and promotes glioma cell proliferation. A preliminary experiment showed a positive correlation between ECT2 and pituitary tumor-transforming gene 1 (PTTG1). The aim of this study was to explore how ECT2 affects PTTG1 to influence the proliferation of glioma cells. METHODS: The expression of ECT2 in glioma was detected by western blot and reverse transcription PCR. The effect of ECT2 on glioma proliferation was examined using cell proliferation-related assays and in vivo experiments. The effect of ECT2 on the stability of E2F transcription factor 1 (E2F1) and the expression of PTTG1 were examined by western blot, co-immunoprecipitation, and in vivo ubiquitination assays. RESULTS: ECT2 was upregulated in gliomas and was negatively correlated with prognosis; its downregulation inhibited glioma cell proliferation. Furthermore, ECT2 regulated PTTG1 expression by affecting the stability of E2F1, thereby affecting the glioma cell proliferation. In addition, the deubiquitinating enzyme proteasome 26S subunit, non-ATPase 14 (PSMD14) affected the degradation of E2F1 and regulated the stability of E2F1. Interestingly, ECT2 regulated the expression of PSMD14. CONCLUSION: In this study, we clarify a new mechanism by which ECT2 regulates the expression of PTTG1 and thus affects the proliferation of glioma cells: ECT2 influences the stability of E2F1 by regulating the expression of the deubiquitinating enzyme PSMD14, thereby affecting the expression of PTTG1. Intensive and extensive understanding of the mechanism of ECT2 in glioma proliferation may provide an opportunity for the development of new molecular therapeutic targets for glioma treatment.
    [Abstract] [Full Text] [Related] [New Search]