These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel aluminum-sensitive fluorescent chemosensor based on 4-aminoantipyrine: An experimental and theoretical study.
    Author: Alyaninezhad Z, Bekhradnia A, Feizi N, Arshadi S, Zibandeh M.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr 05; 212():32-41. PubMed ID: 30594851.
    Abstract:
    A practical and an efficient Schiff base fluorescent chemosensor, salicylidene-4-aminoantipyrinyl-4-aminophenol (A2) has been synthesized through the condensation procedure of 1-phenyl-2,3-dimethyl-4-(N-2-hydroxybenzylidene)-3-pyrazoline-5-one and 4-aminophenol. Compound A2 has displayed a considerable fluorescence enhancement with high selectivity and sensitivity toward Al3+ ion and exhibited an emission band at 484 nm, which contained a low detection limit (LOD) of 1.06 × 10-7 M. In accordance to the experimental study, DFT, TDDFT calculations, and the enhancement of fluorescence intensity might be attributed to the inhibition of Photoinduced Electron Transfer (PET) along with the Excited-State Intramolecular Proton Transfer (ESIPT). As it has been specified by Job's plot and DFT calculations, the binding stoichiometries of A2 with Al3+ are 1:1, while the association constant (Ka) of Al3+ has been calculated and observed to be 2.67 × × 105 M-1. Furthermore, the binding behavior and sensing mechanism of A2 with Al3+ have been confirmed through the experiments of 1H NMR titration.
    [Abstract] [Full Text] [Related] [New Search]