These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Error Processing and Inhibitory Control in Obsessive-Compulsive Disorder: A Meta-analysis Using Statistical Parametric Maps. Author: Norman LJ, Taylor SF, Liu Y, Radua J, Chye Y, De Wit SJ, Huyser C, Karahanoglu FI, Luks T, Manoach D, Mathews C, Rubia K, Suo C, van den Heuvel OA, Yücel M, Fitzgerald K. Journal: Biol Psychiatry; 2019 May 01; 85(9):713-725. PubMed ID: 30595231. Abstract: BACKGROUND: Error processing and inhibitory control enable the adjustment of behaviors to meet task demands. Functional magnetic resonance imaging studies report brain activation abnormalities in patients with obsessive-compulsive disorder (OCD) during both processes. However, conclusions are limited by inconsistencies in the literature and small sample sizes. Therefore, the aim here was to perform a meta-analysis of the existing literature using unthresholded statistical maps from previous studies. METHODS: A voxelwise seed-based d mapping meta-analysis was performed using t-maps from studies comparing patients with OCD and healthy control subjects (HCs) during error processing and inhibitory control. For the error processing analysis, 239 patients with OCD (120 male; 79 medicated) and 229 HCs (129 male) were included, while the inhibitory control analysis included 245 patients with OCD (120 male; 91 medicated) and 239 HCs (135 male). RESULTS: Patients with OCD, relative to HCs, showed longer inhibitory control reaction time (standardized mean difference = 0.20, p = .03, 95% confidence interval = 0.016, 0.393) and more inhibitory control errors (standardized mean difference = 0.22, p = .02, 95% confidence interval = 0.039, 0.399). In the brain, patients showed hyperactivation in the bilateral dorsal anterior cingulate cortex, supplementary motor area, and pre-supplementary motor area as well as right anterior insula/frontal operculum and anterior lateral prefrontal cortex during error processing but showed hypoactivation during inhibitory control in the rostral and ventral anterior cingulate cortices and bilateral thalamus/caudate, as well as the right anterior insula/frontal operculum, supramarginal gyrus, and medial orbitofrontal cortex (all seed-based d mapping z value >2, p < .001). CONCLUSIONS: A hyperactive error processing mechanism in conjunction with impairments in implementing inhibitory control may underlie deficits in stopping unwanted compulsive behaviors in the disorder.[Abstract] [Full Text] [Related] [New Search]