These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Divergent changes in cropping patterns and their effects on grain production under different agro-ecosystems over high latitudes in China.
    Author: Pan T, Du G, Dong J, Kuang W, De Maeyer P, Kurban A.
    Journal: Sci Total Environ; 2019 Apr 01; 659():314-325. PubMed ID: 30599350.
    Abstract:
    Drastic rice paddy expansion and rapid upland crop loss have occurred over high latitudes in China, which would affect national food security. Different agro-ecosystems (i.e., state farms guided by the central government for agriculture and private farms guided by individual farmers for agriculture) could lead to different agricultural land use patterns; but this topic has not been investigated, which has limited our understanding of the dynamics of cropping patterns (i.e., rice paddies and upland crops) under different agro-ecosystems and their effect on total grain production. Thus, this study examined these issues over high latitudes in China. The results showed that: the developed methodology for determining cropping patterns presented high accuracy (over 90%). Based on the cropping pattern data, first, a satellite evidence of substantial increase in rice paddies with the loss of upland crops was found, and the large-scale conversion from upland crops to rice paddies has become the principal land use changes during the period of 2000-2015. Second, the new phenomenon was observed with rice paddies in state farms expanding at faster rates (at proportions of 12.98%-70.11%) than those in private farms (4.86%-30.48%). Third, the conversion of upland crops into rice paddies contributed 10.69% of the net increase in grain, which played a significant role in ensuring food security. The study provided new evidence of different changes in cropping patterns under different agro-ecosystems, thereby affecting rice cropping pattern and total grain production. This information is important for understanding and guiding the response to food sustainability and environmental issues.
    [Abstract] [Full Text] [Related] [New Search]