These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Injectable hydrogels from enzyme-catalyzed crosslinking as BMSCs-laden scaffold for bone repair and regeneration. Author: Zhang Y, Chen H, Zhang T, Zan Y, Ni T, Cao Y, Wang J, Liu M, Pei R. Journal: Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():841-849. PubMed ID: 30606598. Abstract: Bone-marrow-derived mesenchymal stem cells possess great potential for tissue engineering and regenerative medicine. In the work, an injectable BMSCs-laden hydrogel system was formed by enzyme-catalyzed crosslinking of hyaluronic acid-tyramine and chondroitin sulfate-tyramine in the presence of hydrogen peroxide and horseradish peroxidase, which was used as a 3D scaffold to explore the behavior of the mesenchymal stem cells. Afterward, the gelation rate, mechanical properties, as well as the degradation process of the scaffold were well characterized and optimized. Furthermore, bone morphogenetic protein-2 was encapsulated in the scaffold, which was used to improve the osteogenic properties. The results illustrated that such a BMSCs-laden hydrogel not only offered a proper microenvironment for the adhesion, proliferation and differentiation of mesenchymal stem cells in vitro, but also promoted bone regeneration in vivo. Therefore, this injectable BMSCs-laden hydrogel may serve as an efficient 3D scaffold for bone repair and regeneration.[Abstract] [Full Text] [Related] [New Search]