These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine.
    Author: Mahmoodi NM, Abdi J, Taghizadeh M, Taghizadeh A, Hayati B, Shekarchi AA, Vossoughi M.
    Journal: J Environ Manage; 2019 Mar 01; 233():660-672. PubMed ID: 30611099.
    Abstract:
    Herein, Kiwi peel activated carbon (AC), Materials Institute Lavoisier (MIL-88B (Fe), and AC/MIL-88B (Fe) composite were synthesized and used as catalysts to degrade Reactive Red 198. The material properties were analyzed by the FTIR, BET-BJH, XRD, FESEM, EDX, TGA, and UV-Vis/DRS. The BET surface area of AC, MIL-88B (Fe) and AC/MIL-88B (Fe) was 1113.3, 150.7, and 199.4 m2/g, respectively. The band gap values (Eg) estimated by Tauc plot method, were obtained 5.06, 4.19 and 3.79 eV for AC, MIL-88B (Fe) and AC/MIL-88B (Fe), respectively. The results indicated that the AC/MIL-88B (Fe) composite had higher photocatalytic activity (99%) than that of pure AC (79%) and MIL-88B (Fe) catalysts (87%). The decolorization kinetic was matched well with the second-order model. Moreover, the data were modeled using least squares support vector machine which optimized with Cuckoo optimization algorithm. The optimal parameters were found 0.837 and 3.49e+02 based on σ2 and γ values, respectively. The mean square error (MSE) and correlation coefficient (R2) values were obtained 3.97 and 0.948. Therefore, the attained data, materials characterization and prediction of modeling validate the composite form of MIL-88B(Fe) with new AC, had better photocatalytic activity in comparison with the individual form.
    [Abstract] [Full Text] [Related] [New Search]