These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Highly stable Ni-MOF comprising triphenylamine moieties as a high-performance redox indicator for sensitive aptasensor construction. Author: Wu H, Li M, Wang Z, Yu H, Han J, Xie G, Chen S. Journal: Anal Chim Acta; 2019 Feb 21; 1049():74-81. PubMed ID: 30612659. Abstract: Electroactive metal-organic frameworks (MOFs) with large surface area and manipulatable structural properties show promise as a new type of signal probe for electrochemical biosensing application. In this work, an electroactive Ni-MOF, assembled by the redox-active ligands 4,4',4″-Tricarboxytriphenylamine (H3TCA), a triphenylamine derivatives, as the electroactive source and magnetic ordered Ni4O4 clusters as electronic transport nodes, is first designed and applied for electrochemical aptasensing of thrombin (Tb). The designed Ni-MOF probe realizes a stable and sensitive electrochemical signal output based on simple sandwich-type aptasensing because the high-content TCA active sites and good magnetic ordered intermediate of Ni4O4 clusters are periodically arranged in well-defined porous structure of the MOF. The Ni-MOF probe assembled by redox-active ligand presents the high stability and can be directly applied in electrochemical aptasensor, avoiding any post-modification and the addition of redox mediators. As a result, the constructed electrochemical aptasensor shows a wide linear relationship for Tb from 0.05 pM to 50 nM and a detection limit of 0.016 pM (S/N = 3). Furthermore, the proposed aptasensor is successfully applied to analysis of target Tb in real serum sample with satisfactory results. The present work indicates that fabricating a redox-active organic molecule in functionalized MOFs offer a feasible strategy to design high-stable electroactive MOFs for construction of electrochemical biosensors with simplicity, high selectivity and sensitivity.[Abstract] [Full Text] [Related] [New Search]