These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intermittent wetting clothing as a cooling strategy for body heat strain alleviation of vulnerable populations during a severe heatwave incident.
    Author: Song W, Wang F, Zhang C.
    Journal: J Therm Biol; 2019 Jan; 79():33-41. PubMed ID: 30612683.
    Abstract:
    Many documented studies have demonstrated the human mortality rate increases during severe heatwaves. There remains a need for further explore ecologically valid cooling strategies to alleviate body heat strain during extreme heatwaves. The main aim of this work was to explore whether intermittent wetting clothing can be served as an ecologically valid cooling strategy to mitigate heat stress on inactive vulnerable populations not having access to air-conditioning during a severe heatwave. Ten young male subjects underwent two 90-min separate trials: a dry clothing trial (i.e., CON) and a wetted clothing cooling trial (i.e., WEC). A set of light summer wear was chosen and intermittently wetted by tap water at intervals of every 30 min. Physiological and perceptual responses of subjects were examined and compared. All trials were performed in a chamber with an air temperature of 43 ± 0.5 °C, RH= 57 ± 5% and an air velocity of 0.15 ± 0.05 m/s (WBGT=37.35 °C). Results demonstrated that WEC, compared with CON, could significantly reduce both the mean skin temperature and the core temperature throughout the 5-90th min and 25-90th min of the trial, respectively (p < 0.05). Besides, WEC could also remarkable reduce local skin temperatures at those body sites covered by wet clothing (p < 0.05). In comparison, no significant difference was found between WEC and CON on perceptual responses. Further, it was also found from PHS simulations that conditions with a partial water vapour pressure ≤ 3.1-3.5 kPa would not induce pronounced core temperature rises at 43 °C. Finally, it may be concluded that intermittent wetting clothing could be served as an ecologically valid cooling strategy to reduce thermophysiological strain of vulnerable populations while seating during humid heatwaves and thereby improve their health and safety.
    [Abstract] [Full Text] [Related] [New Search]