These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The reduction effects of riparian reforestation on runoff and nutrient export based on AnnAGNPS model in a small typical watershed, China. Author: Jiang K, Li Z, Luo C, Wu M, Chao L, Zhou Q, Zhao H. Journal: Environ Sci Pollut Res Int; 2019 Feb; 26(6):5934-5943. PubMed ID: 30613883. Abstract: The continuous deterioration of the aquatic environment in rivers and streams is increasingly causing social and political tensions. To alleviate aquatic environmental problems, especially for the nonpoint source pollution, establishment of riparian forest buffers has been demonstrated as an effective control measure. However, few comprehensive studies of the reduction effects of riparian reforestation on the aquatic environment have been performed, particularly in identifying the suitable widths of reforestation projects. In this paper, the Annualized Agricultural Non-Point Source (AnnAGNPS) model was used to simulate the reduction effects of riparian reforestation on runoff and nutrient loads in Wucun watershed, China. The results showed that 20-m, 40-m, and 60-m widths of riparian buffer reforestation had significant effects on the yearly loads of total nitrogen (TN) and total phosphorus (TP), with reduced rates of 23.21 to 56.2% and 18.16 to 52.14%, respectively. The reduction effect on annual runoff varied from 2.8 to 5.4%. Furthermore, the reduction effect of nutrients performed best during the transition period, while the best runoff reduction was found during the dry period. These distinct reductions indicated that the implementation of riparian forest buffers was capable of reducing the risk and frequency of flooding and eutrophication, especially during the wet and transition periods. Additionally, the 20-m width of riparian buffer reforestation achieved the highest reduction efficiency for runoff, and the 40-m width was the most suitable reforested riparian buffer width for TN and TP. Therefore, 40 m may be the optimum buffer width for the implementation of riparian reforestation in the Wucun watershed. These research results provided scientific information on selecting the optimum buffer width for aquatic environmental regulators and managers as the reduction effects of different widths of riparian buffers on runoff and nutrients were different when considering buffer reforestation.[Abstract] [Full Text] [Related] [New Search]