These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Partial and Complete Substitution of the 1,4-Benzenedicarboxylate Linker in UiO-66 with 1,4-Naphthalenedicarboxylate: Synthesis, Characterization, and H2-Adsorption Properties.
    Author: Butova VV, Budnyk AP, Charykov KM, Vetlitsyna-Novikova KS, Bugaev AL, Guda AA, Damin A, Chavan SM, Øien-Ødegaard S, Lillerud KP, Soldatov AV, Lamberti C.
    Journal: Inorg Chem; 2019 Jan 22; 58(2):1607-1620. PubMed ID: 30624909.
    Abstract:
    We describe the synthesis and corresponding full characterization of the set of UiO-66 metal-organic frameworks (MOFs) with 1,4-benzenedicarboxylate (C6H4(COOH)2, hereafter H2BDC) and 1,4-naphthalenedicarboxylate (C10H6(COOH)2, hereafter H2NDC) mixed linkers with NDC contents of 0, 25, 50, and 100%. Their structural (powder X-ray diffraction, PXRD), adsorptive (N2, H2, and CO2), vibrational (IR/Raman), and thermal stability (thermogravimetric analysis, TGA) properties quantitatively correlate with the NDC content in the material. The UiO-66 phase topology is conserved at all relative fractions of BDC/NDC. The comparison between the synchrotron radiation PXRD and 77 K N2-adsorption isotherms obtained on the 50:50 BDC/NDC sample and on a mechanical mixture of the pure BDC and NDC samples univocally proves that in the mixed linkers of the MOFs the BDC and NDC linkers are shared in each MOF crystal, discarding the hypothesis of two independent phases, where each crystal contains only BDC or NDC linkers. The careful tuning of the NDC content opens a way for controlled alteration of the sorption properties of the resulting material as testified by the H2-adsorption experiments, showing that the relative ranking of the materials in H2 adsorption is different in different equilibrium-pressure ranges: at low pressures, 100NDC is the most efficient sample, while with increasing pressure, its relative performance progressively declines; at high pressures, the ranking follows the BDC content, reflecting the larger internal pore volume available in the MOFs with a higher fraction of smaller linkers. The H2-adsorption isotherms normalized by the sample Brunauer-Emmett-Teller specific surface area show, in the whole pressure range, that the surface-area-specific H2-adsorption capabilities in UiO-66 MOFs increase progressively with increasing NDC content. Density functional theory calculations, using the hybrid B3LYP exchange correlation functional and quadruple-ζ with four polarization functions (QZ4P) basis set, show that the interaction of H2 with the H2NDC linker results in an adsorption energy larger by about 15% with respect to that calculated for adsorption on the H2BDC linker.
    [Abstract] [Full Text] [Related] [New Search]