These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inverse PCR to perform long-distance haplotyping: main applications to improve preimplantation genetic diagnosis in hemophilia. Author: Abelleyro MM, Marchione VD, Palmitelli M, Radic CP, Neme D, Larripa IB, Medina-Acosta E, De Brasi CD, Rossetti LC. Journal: Eur J Hum Genet; 2019 Apr; 27(4):603-611. PubMed ID: 30626931. Abstract: Among other applications of long-distance haplotype phasing in clinical genetics, determination of linked DNA markers as surrogate for problematic structural variants (e.g., repeat-mediated rearrangements) is essential to perform diagnosis from low-quality DNA samples. We describe a next-of-kin-independent (physical) phasing approach based on inverse-PCR (iPCR) paired-end amplification (PI). This method enables typing the multialleles of the short tandem repeat (STR) F8Int21[CA]n at the F8-intron 21, as a surrogate DNA marker for the F8-intron 22 inversion (Inv22), the hemophilia A-causative hotspot, within the transmitted haplotype in informative carriers. We provide proof-of-concept by blindly validating the PI approach in 15 carrier mother/affected-son duos. Every F8Int21[CA]n STR allele determined in phase with the Inv22 allele in the female carriers from the informative duos was confirmed in the hemizygous proband (P = 0.00003). A second surrogate STR locus at the F8-IVS22 was obtained by the PI approach improving severe-HA preimplantation genetic diagnosis by augmenting heterozygosity in Inv22 carriers bypassing the requirement for family linkage analysis. The ability of the PI-assay to combine other marker pairs was demonstrated by haplotyping a SNV (F8:c.6118T > C) with a >28kb-distant F8-IVS22 STR. The PI approach has proven flexibility to target different marker pairs and has potential for multiplex characterization of iPCR products by massively parallel sequencing.[Abstract] [Full Text] [Related] [New Search]