These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Analysis of Different Particle Sizes, Pollution Characteristics, and Sources of Atmospheric Aerosols During the Spring Dust Period in Beijing].
    Author: Yang Y, Li XR, Chen X, Liu SQ, Liu YS, Xu J, Wang LL, Tao MH, Wang GH.
    Journal: Huan Jing Ke Xue; 2018 Dec 08; 39(12):5315-5322. PubMed ID: 30628374.
    Abstract:
    To understand the evolution of the physical and chemical properties of dust aerosols in the atmosphere, the concentrations and chemical compositions of differently sized particles were continuously observed and analyzed using an ion chromatograph and carbonaceous analyzer during the outbreak of dust in May 2017 in Beijing. The concentrations of total suspended particulate (TSP), water-soluble organic carbon (WSOC), elemental carbon (EC), OC, and water-soluble inorganic ions were (2237.59±681.49), (29.90±18.05), (1.46±3.05), (67.35±29.07), and (136.75±46.38) μg·m-3 during the dust period, respectively, and significantly exceeded that of the non-dust period, except for EC. The Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-, and WSOC concentrations during the dust storm period were 11.55, 3.00, 14.88, 14.89, 9.40, 4.60, 2.40, 3.91, and 1.83 times higher than that during the non-dust period. The growth of crustal ions, such as Ca2+ and K+, was notably the largest and NH4+ and NO3- were minimal. The size distribution indicates that crustal ions primarily occur in the coarse mode during the whole sampling campaign. The SO42- and NO3- ions are slightly bimodal during the dust storm, with a dominant peak in the coarse mode at 4.7-5.8 μm and a very minor peak in the fine mode with a size range of 0.43-0.65 μm. During the non-dust period, SO42- is the dominant mode in the fine mode, while NO3- changes little compared with that during the dust period, which indicates that heterogeneous reaction with crustal ions is the main formation mechanism of NO3- in the coarse mode. A significant positive correlation was observed between SO42- and the sum of crustal ions during the dust period, indicating that the source of SO42- during the dust period is remote transmission of the dust storm. During the non-dust period, the positive correlation of SO42- with NH4+ indicates that secondary formation is the main source of SO42-. Based on correlation analysis of NO3- with crustal ions and NH4+, both remote transmission and secondary formation are the sources of NO3- during the dust storm and heterogeneous reactions are predominant during the non-dust period.
    [Abstract] [Full Text] [Related] [New Search]