These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [High-rate Nitrogen Removal in a Two-stage Partial Nitritation-ANAMMOX Process Under Mainstream Conditions]. Author: Liu WR, Yang DH, Shen YL, Wang JF, Wu P, Qian FY, Chen CJ. Journal: Huan Jing Ke Xue; 2018 Dec 08; 39(12):5580-5586. PubMed ID: 30628403. Abstract: A two-stage partial nitritation (PN)-ANAMMOX process was successfully carried out for low-strength NH4+-N (50 mg·L-1) wastewater treatment at ambient/low temperatures. The results show that an average total nitrogen removal rate and removal efficiency above 0.6 kg·(m3·d)-1and 80% could be maintained, respectively, at temperatures between 20℃ and 14℃. The two-stage PN-ANAMMOX process was successful both under NO2--N-limited and NH4+-N-limited conditions. When the two-stage PN-ANAMMOX process was operated under NH4+-N-limited conditions, the "limit of technology" for nitrogen removal (TN<3 mg·L-1) could be easily achieved by following anoxic denitrification. Lowering the temperature to 12℃ resulted in the reduction of the total nitrogen removal rate to~0.5 kg·(m3·d)-1. Due to the low temperature, the anammox reaction became the rate-limiting step for nitrogen removal, while the PN reaction was not impacted. In the temperature range of 10-20℃, the activity-temperature coefficients (θ) of the PN granules and ANAMMOX sludge were 1.056 and 1.172, respectively, suggesting that the anammox bacteria have a higher temperature sensitivity than the ammonium oxidizing bacteria (AOB). Overall, the results clearly indicate that the nitrogen removal loading rate of the two-stage PN-ANAMMOX process is mainly controlled by the activity and quantity of anammox biomass. In contrast, the process nitrogen removal efficiency mainly depends on the performance of the first-stage PN (i.e., effluent NO2--N/NH4+-N ratio and NO3--N concentration) under a constant nitrogen removal loading rate (no overload). Based on these results, a hierarchically separate control strategy was proposed to obtain a high-rate nitrogen removal during the two-stage mainstream PN-ANAMMOX process.[Abstract] [Full Text] [Related] [New Search]