These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: GATA6 Cooperates with EOMES/SMAD2/3 to Deploy the Gene Regulatory Network Governing Human Definitive Endoderm and Pancreas Formation. Author: Chia CY, Madrigal P, Denil SLIJ, Martinez I, Garcia-Bernardo J, El-Khairi R, Chhatriwala M, Shepherd MH, Hattersley AT, Dunn NR, Vallier L. Journal: Stem Cell Reports; 2019 Jan 08; 12(1):57-70. PubMed ID: 30629940. Abstract: Heterozygous de novo mutations in GATA6 are the most frequent cause of pancreatic agenesis in humans. In mice, however, a similar phenotype requires the biallelic loss of Gata6 and its paralog Gata4. To elaborate the human-specific requirements for GATA6, we chose to model GATA6 loss in vitro by combining both gene-edited and patient-derived pluripotent stem cells (hPSCs) and directed differentiation toward β-like cells. We find that GATA6 heterozygous hPSCs show a modest reduction in definitive endoderm (DE) formation, while GATA6-null hPSCs fail to enter the DE lineage. Consistent with these results, genome-wide studies show that GATA6 binds and cooperates with EOMES/SMAD2/3 to regulate the expression of cardinal endoderm genes. The early deficit in DE is accompanied by a significant reduction in PDX1+ pancreatic progenitors and C-PEPTIDE+ β-like cells. Taken together, our data position GATA6 as a gatekeeper to early human, but not murine, pancreatic ontogeny.[Abstract] [Full Text] [Related] [New Search]