These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Antidiabetic Potential of Black Mulberry Extract-Enriched Pasta through Inhibition of Enzymes and Glycemic Index. Author: Yazdankhah S, Hojjati M, Azizi MH. Journal: Plant Foods Hum Nutr; 2019 Mar; 74(1):149-155. PubMed ID: 30632080. Abstract: In the present work, pasta enriched in different formulations by black mulberry extract in order to inhibit enzymes related to starch hydrolyzation. Total phenol content (TPC), antioxidant activity and anthocyanin components of ethanol/water black mulberry extract were investigated. TPC of the black mulberry extract was found 65.61 ± 0.07 mg GAE/g. Black mulberry extract could scavenge the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals more effectively than tertiary butylhydroquinone (TBHQ) also vitamin C due to its detected polyphenolic compounds (cyanidin-3-glucoside, cyanidin-3-rutinoside, and cyanidin-3-xyloside). The IC50 value of the black mulberry extract was obtained 8.31 μg/mL while it was measured 59.62 and 62.64 μg/mL for TBHQ and vitamin C, respectively. The pasta-enriched with freeze-dried black mulberry extract showed effective inhibition against applied α-amylases (α-amylase from porcine pancreas, Bacillus sp, and human saliva) and α-glucosidase originated from Saccharomyces cerevisiae. The IC50 values of tested enzymes exhibited that black mulberry effectively act as an inhibitory agent comparing with acarbose because of its antioxidant activity. Results revealed that starch hydrolysis index (HI) and predicted glycemic index (GIpredicted) of cooked pasta-enriched with various concentration levels of black mulberry extract were significantly decreased especially when 1.5% of the extract was incorporated. In addition, The IC50 value of the black mulberry extract obtained from cooked pasta was increased against α-amylase and α-glucosidase. The results obviously presented that diabetes mellitus type 2 could be resolved by enrichment of polyphenolic compounds into the pasta.[Abstract] [Full Text] [Related] [New Search]