These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Placental vascular abnormalities in the mouse alter umbilical artery wave reflections.
    Author: Cahill LS, Zhou YQ, Hoggarth J, Yu LX, Rahman A, Stortz G, Whitehead CL, Baschat A, Kingdom JC, Macgowan CK, Serghides L, Sled JG.
    Journal: Am J Physiol Heart Circ Physiol; 2019 Mar 01; 316(3):H664-H672. PubMed ID: 30632765.
    Abstract:
    Current methods to detect placental vascular pathologies that monitor Doppler ultrasound changes in umbilical artery (UA) pulsatility have only moderate diagnostic utility, particularly in late gestation. In fetal mice, we recently demonstrated that reflected pressure waves propagate counter to the direction of flow in the UA and proposed the measurement of these reflections as a means to detect abnormalities in the placental circulation. In the present study, we used this approach in combination with microcomputed tomography to investigate the relationship between altered placental vascular architecture and changes in UA wave reflection metrics. Fetuses were assessed at embryonic day (E) 15.5 and E17.5 in control C57BL6/J mice and dams treated with combination antiretroviral therapy (cART), a known model of fetal growth restriction. Whereas the reflection coefficient was not different between groups at E15.5, it was 27% higher at E17.5 in cART-treated mice compared with control mice. This increase in reflection coefficient corresponded to a 36% increase in the total number of vessel segments, a measure of overall architectural complexity. Interestingly, there was no difference in UA pulsatility index between groups, suggesting that the wave reflections convey information about vascular architecture that is not captured by conventional ultrasound metrics. The wave reflection parameters were found to be associated with the morphology of the fetoplacental arterial tree, with the area ratio between the UA and first branch points correlating with the reflection coefficient. This study highlights the potential for wave reflection to aid in the noninvasive clinical assessment of placental vascular pathology. NEW & NOTEWORTHY We used a novel ultrasound methodology based on detecting pulse pressure waves that propagate along the umbilical artery to investigate the relationship between changes in wave reflection metrics and altered placental vascular architecture visualized by microcomputed tomography. Using pregnant mice treated with combination antiretroviral therapy, a model of fetal growth restriction, we demonstrated that reflections in the umbilical artery are sensitive to placental vascular abnormalities and associated with the geometry of the fetoplacental tree.
    [Abstract] [Full Text] [Related] [New Search]