These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cellular localization of messenger RNA encoding amyloid-beta-protein in normal tissue and in Alzheimer disease.
    Author: Schmechel DE, Goldgaber D, Burkhart DS, Gilbert JR, Gajdusek DC, Roses AD.
    Journal: Alzheimer Dis Assoc Disord; 1988; 2(2):96-111. PubMed ID: 3063300.
    Abstract:
    Amyloid precursor protein (APP) gene encodes the short peptide fragment amyloid-beta-protein present in senile plaque cores, cerebrovascular amyloid, and intracellular neurofibrillary tangles in Alzheimer disease (AD). Using in situ hybridization with biotin-labeled RNA probes, we found distinctive patterns of APP gene expression in different regions of postmortem human brain. Strong hybridization signal for APP messenger RNA (mRNA) was detected in specific classes of neurons, fascicular oligodendroglia, satellite glia, and presumptive microglia. Weaker signal was seen in other neuronal classes, fascicular astrocytes, and vascular endothelial cells, but no signal was seen in protoplasmic astrocytes. Human thymus also shows a restricted pattern of hybridization with high signal in reticular epithelial cells, and much lower signal in lymphocytes. In AD patients, neuronal hybridization for APP mRNA was specifically increased in hippocampus, but not cerebellar and visual cortex when compared to hybridization for neuron-specific enolase mRNA. Most neurons with neurofibrillary tangles had strong APP mRNA signal. These results suggest that APP gene expression is highly regulated in normal tissue, that many different cell classes in brain express the APP gene, and that neuronal expression may increase specifically in brain regions where widespread injury occurs in AD. Amyloid deposits in brains of AD patients might be explained by local production of precursor protein in endothelial cells, neurons or glia.
    [Abstract] [Full Text] [Related] [New Search]