These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Direct radiation-induced effects on dental hard tissue.
    Author: Lu H, Zhao Q, Guo J, Zeng B, Yu X, Yu D, Zhao W.
    Journal: Radiat Oncol; 2019 Jan 11; 14(1):5. PubMed ID: 30635005.
    Abstract:
    BACKGROUND: Radiation caries is a complication of radiotherapy characterized by enamel erosion and dentin exposure. The mechanisms of characteristic radiation caries formation are not well-understood. The aim of this study was to evaluate the direct radiation-induced effects on dental hard tissue and investigate their role in the formation of radiation caries. METHODS: Sixty non-carious third molars were divided into three groups (n = 20), which would be exposed to 0 Gy, 30 Gy, and 60 Gy radiation, respectively. After radiation, microhardness and elastic modulus were measured at four depths by means of a Vickers microhardness tester and atomic force microscopy (AFM). The microstructure was observed by scanning electron microscopy (SEM). X-ray diffraction and Raman microspectroscopy were used to determine crystal properties and protein/mineral (2931/960 cm- 1) ratios. RESULTS: A statistically significant decrease in microhardness and elastic modulus values 50 μm from the dentino-enamel junction (DEJ) in enamel was revealed in the 30-Gy and 60-Gy groups. With the increasing dose, destruction of interprismatic substance and fissures at the DEJ-adjacent region were found. A greater reduction of crystallinity was revealed in enamel compared with dentin. Raman spectroscopic analysis showed a slight increase of the protein/mineral ratio for enamel following accumulated radiation, while the protein/mineral ratio for dentin was decreased. CONCLUSIONS: Radiation could directly alter the mechanical properties, micro-morphology, crystal properties, and chemical composition of dental hard tissue. The early destruction of DEJ-adjacent enamel, combined with decreased crystallinity of enamel under radiation exposure, may be related to the formation of characteristic radiation caries.
    [Abstract] [Full Text] [Related] [New Search]