These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fluorometric determination of the activity of uracil-DNA glycosylase by using graphene oxide and exonuclease I assisted signal amplification. Author: Chen M, Li W, Ma C, Wu K, He H, Wang K. Journal: Mikrochim Acta; 2019 Jan 14; 186(2):110. PubMed ID: 30637581. Abstract: The base-excision repair enzyme uracil-DNA glycosylase (UDG) plays a crucial role in the maintenance of genome integrity. The authors describe a fluorometric method for the detection of the activity of UDG. It is making use of (a) a 3'-FAM-labeled hairpin DNA probe with two uracil deoxyribonucleotides in the self-complementary duplex region of its hairpin structure, (b) exonuclease I (Exo I) that catalyzes the release of FAM from the UDG-induced stretched ssDNA probe, and (c) graphene oxide that quenches the green FAM fluorescence of the intact hairpin DNA probe in the absence of UDG. If Exo I causes the release of FAM from the hairpin DNA probe, the fluorescence peaking at 517 nm is turned off in the absence of UDG but turned on in its presence. The resulting assay has a wide linear range (0.008 to 1 U·mL-1) and a detection limit as low as 0.005 U·mL-1. It has good specificity for UDG over potentially interfering enzymes and gave satisfactory results when applied to biological samples. Conceivably, the method may be used in a wide range of applications such as in diagnosis, drug screening, and in studying the repair of DNA lesions. Graphical abstract Schematic presentation of a fluorometric strategy for detection of the activity of uracil-DNA glycosylase by using on graphene oxide and exonuclease I assisted signal amplification.[Abstract] [Full Text] [Related] [New Search]