These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development and validation of an UPLC-MS/MS method for the therapeutic drug monitoring of oral anti-hormonal drugs in oncology.
    Author: van Nuland M, Venekamp N, de Vries N, de Jong KAM, Rosing H, Beijnen JH.
    Journal: J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Feb 01; 1106-1107():26-34. PubMed ID: 30639947.
    Abstract:
    A liquid chromatography-mass spectrometry assay was developed and validated for simultaneous quantification of anti-hormonal compounds abiraterone, anastrozole, bicalutamide, Δ(4)-abiraterone (D4A), N-desmethyl enzalutamide, enzalutamide, Z-endoxifen, exemestane and letrozole for the purpose of therapeutic drug monitoring (TDM). Plasma samples were prepared with protein precipitation. Analyses were performed with a triple quadrupole mass spectrometer operating in the positive and negative ion-mode. The validated assay ranges from 2 to 200 ng/mL for abiraterone, 0.2-20 ng/mL for D4A, 10-200 ng/mL for anastrozole and letrozole, 1-20 ng/mL for Z-endoxifen, 1.88-37.5 ng/mL for exemestane and 1500-30,000 ng/mL for enzalutamide, N-desmethyl enzalutamide and bicalutamide. Due to low sensitivity for exemestane, the final extract of exemestane patient samples should be concentrated prior to injection and a larger sample volume should be prepared for exemestane patient samples and QC samples to obtain adequate sensitivity. Furthermore, we observed a batch-dependent stability for abiraterone in plasma at room temperature and therefore samples should be shipped on ice. This newly validated method has been successfully applied for routine TDM of anti-hormonal drugs in cancer patients.
    [Abstract] [Full Text] [Related] [New Search]