These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Author: Zhang K, Li Z, Maxey M, Chen S, Karniadakis GE.
    Journal: Langmuir; 2019 Feb 12; 35(6):2431-2442. PubMed ID: 30640480.
    Abstract:
    The superhydrophobic leaves of a lotus plant and other natural surfaces with self-cleaning function have been studied intensively for the development of artificial biomimetic surfaces. The surface roughness generated by hierarchical structures is a crucial property required for superhydrophobicity and self-cleaning. Here, we demonstrate a novel self-cleaning mechanism of textured surfaces attributed to a spontaneous coalescence-induced wetting transition. We focus on the wetting transition as it represents a new mechanism, which can explain why droplets on rough surfaces are able to change from the highly adhesive Wenzel state to the low adhesion Cassie-Baxter state and achieve self-cleaning. In particular, we perform many-body dissipative particle dynamics simulations of liquid droplets (with a diameter of 89 μm) sitting on mechanically textured substrates. We quantitatively investigate the wetting behavior of an isolated droplet as well as coalescence of droplets for both Cassie-Baxter and Wenzel states. Our simulation results reveal that droplets in the Cassie-Baxter state have much lower contact angle hysteresis and smaller hydrodynamic resistance than droplets in the Wenzel state. When small neighboring droplets coalesce into bigger ones on textured hydrophobic substrates, we observe a spontaneous wetting transition from the Wenzel state to the Cassie-Baxter state, which is powered by the surface energy released upon coalescence of the droplets. For superhydrophobic surfaces, the released surface energy may be sufficient to cause a jumping motion of droplets off the surface, in which case adding one more droplet to the coalescence may increase the jumping velocity by one order of magnitude. When multiple droplets are involved, we found that the spatial distribution of liquid components in the coalesced droplet can be controlled by properly designing the overall arrangement of droplets and the distance between them. These findings offer new insights for designing effective biomimetic self-cleaning surfaces by enhancing spontaneous Wenzel-to-Cassie wetting transitions, and additionally, for developing new noncontact methods to manipulate liquids inside the small droplets via multiple-droplet coalescence.
    [Abstract] [Full Text] [Related] [New Search]