These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuropharmacokinetic evaluation of lactoferrin-treated indinavir-loaded nanoemulsions: remarkable brain delivery enhancement.
    Author: Karami Z, Saghatchi Zanjani MR, Rezaee S, Rostamizadeh K, Hamidi M.
    Journal: Drug Dev Ind Pharm; 2019 May; 45(5):736-744. PubMed ID: 30640551.
    Abstract:
    OBJECTIVE: Indinavir (IDV), an antiretroviral protease inhibitor used in treatment of HIV infection, has limited entry into brain due to efflux by the P-glycoprotein presented in blood-brain barrier. The aim of present study was to develop lactoferrin-treated nanoemulsion containing indinavir (Lf-IDV-NEs) for delivery to brain. METHODS: Indinavir-loaded nanoemulsions (IDV-NEs) were prepared by high-speed homogenization method, and then lactoferrin was coupled to IDV-NEs by water soluble EDC method. RESULTS: The hydrodynamic diameters, polydispersity index, and zeta potential of IDV-NEs were 112 ± 3.5 nm, 0.20 ± 0.02, and -33.2 ± 2.6 mV, respectively. From in vivo studies in animal model of rats, the AUC0-4 h of brain concentration-time profile of IDV-NEs and Lf-IDV-NEs were 1.6 and 4.1 times higher than free drug, respectively. The brain uptake clearance of IDV-NEs and Lf-IDV-NEs were, interestingly, 393- and 420-times higher than the free drug. CONCLUSIONS: It can be concluded that applying both lactoferrin-treated and non-treated nanoemulsions clearly leads to significant brain penetration enhancement of indinavir, an effect which is more pronounced in the case of Lf-IDV-NEs with the higher drug residence time in brain.
    [Abstract] [Full Text] [Related] [New Search]