These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The Cotton High-Affinity K+ Transporter, GhHAK5a, Is Essential for Shoot Regulation of K+ Uptake in Root under Potassium Deficiency.
    Author: Wang Y, Wang Y, Li B, Xiong C, Eneji AE, Zhang M, Li F, Tian X, Li Z.
    Journal: Plant Cell Physiol; 2019 Apr 01; 60(4):888-899. PubMed ID: 30649443.
    Abstract:
    Potassium (K) deficiency is a key limiting factor in cotton (Gossypium hirsutum) production. By grafting two contrasting cotton cultivars, CCRI41 (more susceptible to K+ deficiency) and SCRC22 (more tolerant of K+ deficiency), we established that cotton shoot plays a vital role in the regulation of root K+ uptake. To identify the genetic basis of this finding, we performed RNA sequencing (RNA-seq) of roots of CCRI41 self-grafts (CCRI41/CCRI41, scion/rootstock) and SCRC22/CCRI41 reciprocal-grafts exposed to K+ deficiency. We found that GhHAK5a, an orthologous of Arabidopsis thaliana high-affinity K+ transporter, AtHAK5, was significantly induced in the CCRI41 rootstock by the SCRC22 scion. This gene was mainly expressed in roots and was more highly induced by K+ deficiency in roots of SCRC22 than those of CCRI41. Agrobacterium-mediated virus-induced gene silencing and yeast complementary assay showed that GhHAK5a is a high-affinity K+ uptake transporter. Importantly, silencing of GhHAK5a in the CCRI41 rootstock almost completely inhibited the K+ uptake induced by SCRC22 scion in CCRI41 rootstock. We identified a key high-affinity K+ transporter, GhHAK5a in cotton, which is the essential target for shoot regulation of root K+ uptake under K+ deficiency.
    [Abstract] [Full Text] [Related] [New Search]