These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Abnormalities of diffusional kurtosis imaging and regional homogeneity in idiopathic generalized epilepsy with generalized tonic-clonic seizures.
    Author: Liu G, Lyu G, Yang N, Chen B, Yang J, Hu Y, Lei Y, Xia J, Lin F, Fan G.
    Journal: Exp Ther Med; 2019 Jan; 17(1):603-612. PubMed ID: 30651841.
    Abstract:
    Neuroimaging techniques have been used to investigate idiopathic generalized epilepsy with generalized tonic-clonic seizures (IGE-GTCS) and different studies employing these methods have produced varying results. However, there have been few studies exploring diffusional kurtosis imaging (DKI) and regional homogeneity (ReHo) techniques in patients with IGE-GTCS. In the current study, resting-state functional magnetic resonance imaging (fMRI) and DKI data were collected from 28 patients with IGE-GTCS and 28 healthy controls. The ReHo method and tract-based spatial statistical (TBSS) analysis were performed to compare differences between the groups. Compared with healthy controls, patients with IGE-GTCS exhibited markedly increased ReHo in the bilateral putamen, the thalamus, right pallidum, right supplementary motor area and the bilateral paracentral lobules. Compared with healthy controls, patients with IGE-GTCS also exhibited markedly decreased ReHo in the posterior cingulate/precuneus, left angular gyrus and dorsolateral prefrontal cortex. In patients with IGE-GTCS, DKI revealed lower fractional anisotropy in the left anterior/superior corona radiata, left superior longitudinal fasciculus and genu/body of the corpus callosum. Higher mean diffusivity was detected in the bilateral anterior corona radiata, left superior corona radiata, left cingulum, and genu/body/splenium of the corpus callosum. Furthermore, reduced mean kurtosis values were identified over the bilateral superior/posterior corona radiate, left anterior corona radiata, right superior longitudinal fasciculus, left posterior thalamic radiation and the genu/body/splenium of the corpus callosum. Therefore, the results of the current study revealed abnormalities in spontaneous activity in the gray and white matter tracts in patients with IGE-GTCS. These results suggest that novel MRI technology may be useful to help determine the pathogenesis of IGE-GTCS.
    [Abstract] [Full Text] [Related] [New Search]