These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Highly Conductive Ti3 C2 Tx MXene Hybrid Fibers for Flexible and Elastic Fiber-Shaped Supercapacitors. Author: Zhang J, Seyedin S, Qin S, Wang Z, Moradi S, Yang F, Lynch PA, Yang W, Liu J, Wang X, Razal JM. Journal: Small; 2019 Feb; 15(8):e1804732. PubMed ID: 30653274. Abstract: Fiber-shaped supercapacitors (FSCs) are promising energy storage solutions for powering miniaturized or wearable electronics. However, the scalable fabrication of fiber electrodes with high electrical conductivity and excellent energy storage performance for use in FSCs remains a challenge. Here, an easily scalable one-step wet-spinning approach is reported to fabricate highly conductive fibers using hybrid formulations of Ti3 C2 Tx MXene nanosheets and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate. This approach produces fibers with a record conductivity of ≈1489 S cm-1 , which is about five times higher than other reported Ti3 C2 Tx MXene-based fibers (up to ≈290 S cm-1 ). The hybrid fiber at ≈70 wt% MXene shows a high volumetric capacitance (≈614.5 F cm-3 at 5 mV s-1 ) and an excellent rate performance (≈375.2 F cm-3 at 1000 mV s-1 ). When assembled into a free-standing FSC, the energy and power densities of the device reach ≈7.13 Wh cm-3 and ≈8249 mW cm-3 , respectively. The excellent strength and flexibility of the hybrid fibers allow them to be wrapped on a silicone elastomer fiber to achieve an elastic FSC with 96% capacitance retention when cyclically stretched to 100% strain. This work demonstrates the potential of MXene-based fiber electrodes and their scalable production for fiber-based energy storage applications.[Abstract] [Full Text] [Related] [New Search]