These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: OLGA: fast computation of generation probabilities of B- and T-cell receptor amino acid sequences and motifs.
    Author: Sethna Z, Elhanati Y, Callan CG, Walczak AM, Mora T.
    Journal: Bioinformatics; 2019 Sep 01; 35(17):2974-2981. PubMed ID: 30657870.
    Abstract:
    MOTIVATION: High-throughput sequencing of large immune repertoires has enabled the development of methods to predict the probability of generation by V(D)J recombination of T- and B-cell receptors of any specific nucleotide sequence. These generation probabilities are very non-homogeneous, ranging over 20 orders of magnitude in real repertoires. Since the function of a receptor really depends on its protein sequence, it is important to be able to predict this probability of generation at the amino acid level. However, brute-force summation over all the nucleotide sequences with the correct amino acid translation is computationally intractable. The purpose of this paper is to present a solution to this problem. RESULTS: We use dynamic programming to construct an efficient and flexible algorithm, called OLGA (Optimized Likelihood estimate of immunoGlobulin Amino-acid sequences), for calculating the probability of generating a given CDR3 amino acid sequence or motif, with or without V/J restriction, as a result of V(D)J recombination in B or T cells. We apply it to databases of epitope-specific T-cell receptors to evaluate the probability that a typical human subject will possess T cells responsive to specific disease-associated epitopes. The model prediction shows an excellent agreement with published data. We suggest that OLGA may be a useful tool to guide vaccine design. AVAILABILITY AND IMPLEMENTATION: Source code is available at https://github.com/zsethna/OLGA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
    [Abstract] [Full Text] [Related] [New Search]