These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Auditory spatial attention modulates the unmasking effect of perceptual separation in a "cocktail party" environment. Author: Zhang C, Tao R, Zhao H. Journal: Neuropsychologia; 2019 Feb 18; 124():108-116. PubMed ID: 30659864. Abstract: The perceptual separation between a signal speech and a competing speech (masker), induced by the precedence effect, plays an important role in releasing the signal speech from the masker, especially in a reverberant environment. The perceptual-separation-induced unmasking effect has been suggested to involve multiple cognitive processes, such as selective attention. However, whether listeners' spatial attention modulate the perceptual-separation-induced unmasking effect is not clear. The present study investigated how perceptual separation and auditory spatial attention interact with each other to facilitate speech perception under a simulated noisy and reverberant environment by analyzing the cortical auditory evoked potentials to the signal speech. The results showed that the N1 wave was significantly enhanced by perceptual separation between the signal and masker regardless of whether the participants' spatial attention was directed to the signal or not. However, the P2 wave was significantly enhanced by perceptual separation only when the participants attended to the signal speech. The results indicate that the perceptual-separation-induced facilitation of P2 needs more attentional resource than that of N1. The results also showed that the signal speech caused an enhanced N1 in the contralateral hemisphere regardless of whether participants' attention was directed to the signal or not. In contrast, the signal speech caused an enhanced P2 in the contralateral hemisphere only when the participant attended to the signal. The results indicate that the hemispheric distribution of N1 is mainly affected by the perceptual features of the acoustic stimuli, while that of P2 is affected by the listeners' attentional status.[Abstract] [Full Text] [Related] [New Search]