These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Seasonal and spatial contamination statuses and ecological risk of sediment cores highly contaminated by heavy metals and metalloids in the Xiangjiang River. Author: Li H, Chai L, Yang Z, Liao Q, Liu Y, Ouyang B. Journal: Environ Geochem Health; 2019 Jun; 41(3):1617-1633. PubMed ID: 30661141. Abstract: To reveal seasonal and spatial variations of heavy metals and metalloids (HMMs) in sediment of the Xiangjiang River, a total of 24 water and 649 sediment samples were collected from six sampling stations in the Songbai section of the river which had been polluted by HMMs for 100 years. Their contamination statuses and ecological risk were determined by enrichment factor (EF), geo-accumulation index (Igeo), pollution load index (PLI), and mean probable effect concentration quotients (mPECQs) analyses. The results revealed a unique seasonal distribution of metals in the sampling stations: The highest concentrations were revealed in the dry seasons (autumn and winter) and the lowest during the wet seasons (spring and summer). It exhibited a greater seasonal variation in the estuary sediment cores (sites ME and MW) than in the cores of other sites. Moreover, the highest concentrations of the tested metals were also found in the estuary sediment cores in the dry seasons (autumn and winter). The highest vertical concentrations of Pb, Zn, Cu, Ni, As, Fe, and Mn were observed at the depths of 16-36 cm in all of the sampled sediment cores. The EF, Igeo, PLI, and mPECQs values of all samples in autumn were higher than in summer. Cd posed the highest ecological risk in all seasons, although its concentrations were lower compared to other studied elements. Our results will benefit to develop feasible sediment quality guidelines for government monitor and remediate the local sediments in the Xiangjiang River.[Abstract] [Full Text] [Related] [New Search]