These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Green Tea Polyphenols Modify the Gut Microbiome in db/db Mice as Co-Abundance Groups Correlating with the Blood Glucose Lowering Effect. Author: Chen T, Liu AB, Sun S, Ajami NJ, Ross MC, Wang H, Zhang L, Reuhl K, Kobayashi K, Onishi JC, Zhao L, Yang CS. Journal: Mol Nutr Food Res; 2019 Apr; 63(8):e1801064. PubMed ID: 30667580. Abstract: SCOPE: The effects of green tea polyphenols, Polyphenon E (PPE), and black tea polyphenols, theaflavins (TFs), on gut microbiota and development of diabetes in db/db mice are investigated and compared. METHODS AND RESULTS: Supplementation of PPE (0.1%) in the diet of female db/db mice for 7 weeks decreases fasting blood glucose levels and mesenteric fat while increasing the serum level of insulin, possibly through protection against β-cell damage. However, TFs are less or not effective. Microbiome analysis through 16S rRNA gene sequencing shows that PPE and TFs treatments significantly alter the bacterial community structure in the cecum and colon, but not in the ileum. The key bacterial phylotypes responding to the treatments are then clustered into 11 co-abundance groups (CAGs). CAGs 6 and 7, significantly increased by PPE but not by TFs, are negatively associated with blood glucose levels. The operational taxonomic units in these CAGs are from two different phyla, Firmicutes and Bacteroidetes. CAG 10, decreased by PPE and TFs, is positively associated with blood glucose levels. CONCLUSION: Gut microbiota respond to tea polyphenol treatments as CAGs instead of taxa. Some of the CAGs associated with the blood glucose lowering effect are enriched by PPE, but not TFs.[Abstract] [Full Text] [Related] [New Search]