These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Progesterone-induced miR-152 interferes with embryonic implantation by downregulating GLUT3 in endometrial epithelium.
    Author: Nie L, Zhao YB, Zhao D, Long Y, Lei Y, Liu M, Wang YC, Zhang XQ, Zhang JH, Yuan DZ, Yue LM.
    Journal: Am J Physiol Endocrinol Metab; 2019 Apr 01; 316(4):E557-E567. PubMed ID: 30668148.
    Abstract:
    To investigate the role of progesterone-induced micro-RNA (miR)-152 in early embryonic development and implantation by regulating GLUT3 in endometrial epithelium, qRT-PCR was used to detect the expression of miR-152, GLUT1, and GLUT3 in the endometrial epithelial cells of female mice. GLUT1 and GLUT3 proteins were detected by immunohistochemical staining in the mouse endometrial epithelium. Bioinformatics prediction associated with a luciferase assay was performed to determine whether GLUT1 and GLUT3 are target genes of miR-152. Specific miR-152 mimics or inhibitors were transfected into the endometrial epithelial cells to, respectively, overexpress or downregulate miR-152. Next, the glucose concentration of uterine fluid was measured by conducting high-performance liquid chromatography in vivo, and the glucose uptake of the endometrial epithelial cells was observed using a fluorometric assay in vitro. Early embryonic development and implantation were also observed after the miR-152 mimics or inhibitors had been transfected. Embryo transfer was observed after the miR-152 mimic transfection. miR-152 was found to directly target and thereby downregulate GLUT3 expression. The expressions of both miR-152 and GLUT3 in the mouse endometrial epithelium had spatiotemporal characteristics on days 1-4 of pregnancy. miR-152 affected the glucose concentration of uterine fluid and the glucose uptake of endometrial epithelial cells. The transfection of specific miR-152 mimics led to impaired embryonic development and implantation. To conclude, in endometrial epithelial cells, progesterone-induced miR-152 downregulates GLUT3 at the posttranscriptional level to maintain a proper glucose concentration in the uterine fluid, which is necessary for early embryonic development and implantation.
    [Abstract] [Full Text] [Related] [New Search]