These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Probing the Interactions of 1-Alkyl-3-methylimidazolium Tetrafluoroborate (Alkyl = Octyl, Hexyl, Butyl, and Ethyl) Ionic Liquids with Bovine Serum Albumin: An Alkyl Chain Length-Dependent Study.
    Author: Islam MM, Barik S, Sarkar M.
    Journal: J Phys Chem B; 2019 Feb 21; 123(7):1512-1526. PubMed ID: 30672288.
    Abstract:
    Herein, we have investigated the binding interaction of bovine serum albumin (BSA) with a series of 1-alkyl-3-methylimidazolium tetrafluoroborate (alkyl = ethyl, butyl, hexyl, and octyl) ionic liquids (ILs) in physiological buffer medium. The ILs are chosen basically to understand the effect of alkyl chain length on IL-protein interaction. Experiments have shown that the quenching of fluorescence of BSA is induced by relatively longer alkyl chain-containing ILs, [OMIM][BF4] and [HMIM][BF4]. The enthalpy-driven spontaneous binding (-ve Δ G) of hexyl and octyl chain-containing ILs with the protein is mediated by both hydrogen-bonding and van der Waals interactions. The experimental data have categorically explained the denaturation of protein conformation upon interaction with both [OMIM][BF4] and [HMIM][BF4]. The molecular docking calculation nicely corroborates the experimentally obtained results. The present study reveals that neither a smaller alkyl group-containing IL nor a very large alkyl group-containing IL is necessary to have effective protein-IL interactions. The study also reveals the influence of hydrophobic interaction over and above the hydrogen-bonding interaction on protein-IL binding events and essentially gives an idea about the optimum hydrophobic character of the ILs that is necessary to induce protein-IL interaction and consequently the denaturation of the protein structure.
    [Abstract] [Full Text] [Related] [New Search]