These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Conditions affecting the release of thorium and uranium from the tailings of a niobium mine. Author: Li Z, Hadioui M, Wilkinson KJ. Journal: Environ Pollut; 2019 Apr; 247():206-215. PubMed ID: 30677665. Abstract: Determinations of the mobility of metals from tailings is a critical part of any assessment of the environmental impacts of mining activities. The leaching of thorium and uranium from the tailings of different processing stages of a niobium mine was investigated for several pH, ionic strengths and concentrations of natural organic matter (NOM). The pH of the leaching solution did not have a noticeable impact on the extraction of Th, however, for pH values below 4, increased U mobilization was observed. Similarly, only a small fraction of Th (0.05%, ≤15 μg kg-1) and U (1.22%, ≤6 μg kg-1) were mobilized from the tailings in the presence of environmentally relevant concentrations of Ca, Mg or Na. However, in the presence of 10 mg L-1 of fulvic acid, much higher concentrations of ca. 700 μg kg-1 of Th and 35 μg kg-1 of U could be extracted from the tailings. Generally, colloidal forms of Th and dissolved forms of U were mobilized from the tailings, however, in the presence of the fulvic acid, both dissolved and colloidal forms of the two actinides were observed. Single Particle ICP-MS was used to confirm the presence of Th (and U) containing colloids where significant numbers (up to 107 mL-1) of Th and U containing colloids were found, even in 0.2 μm filtered extracts. Although mass equivalent diameters in the range of 6-13 nm Th and 6-9 nm for U could be estimated (based upon the presence of an oxyhydroxide), most of the colloidal mass was attributed to larger (>200 nm) heterocomposite particles.[Abstract] [Full Text] [Related] [New Search]