These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Assessment of gait kinetics in post-menopausal women using tri-axial ankle accelerometers during barefoot walking.
    Author: Madansingh SI, Murphree DH, Kaufman KR, Fortune E.
    Journal: Gait Posture; 2019 Mar; 69():85-90. PubMed ID: 30682643.
    Abstract:
    BACKGROUND: Physical activity (PA) interventions, designed to increase exposure to ground reaction force (GRF) loading, are a common target for reducing fracture risk in post-menopausal women with low bone mineral density (BMD). Unfortunately, accurate tracking of PA in free-living environments and the ability to translate this activity into evaluations of bone health is currently limited. RESEARCH QUESTION: This study evaluates the effectiveness of ankle-worn accelerometers to estimate the vertical GRFs responsible for bone and joint loading in post-menopausal women at a range of self-selected walking speeds during barefoot walking. METHODS: Seventy women, at least one year post-menopause, wore Actigraph GT3X + on both ankles and completed walking trials at self-selected speeds (a minimum of five each at fast, normal and slow walking) along a 30 m instrumented walkway with force plates and photocells to measure loading and estimate gait velocity. Repeated measures correlation analysis and step-wise mixed-effects modelling were performed to evaluate significant predictors of peak vertical GRFs normalized to body weight (pVGRFbw), including peak vertical ankle accelerations (pVacc), walking velocity (Velw) and age. RESULTS: A strong repeated measures correlation of r = 0.75 (95%CI [0.71-0.76] via 1000 bootstrap passes) between pVacc and pVGRFbw was observed. Five-fold cross-validation of mixed-model predictions yielded an average mean-absolute-error (MAE[95%CI]) and root-mean-square-error (RMSE) rate of 5.98%[5.61-6.42] and 0.076 [0.069-0.082] with a more complex model (including Velw,) and 6.80%[6.37-7.54] and 0.087BW[0.081-0.095] with a simpler model (including only pVacc), when comparing accelerometer-based estimations of pVGRFbw to force plate measures of pVGRFbw. Age was not found to be significant. SIGNIFICANCE: This study is the first to show a strong relationship among ankle accelerometry data and high fidelity lower-limb loading approximations in post-menopausal women. The results provide the first steps necessary for estimation of real-world limb and joint loading supporting the goals of accurate PA tracking and improved individualization of clinical interventions.
    [Abstract] [Full Text] [Related] [New Search]