These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Generation of PET Attenuation Map for Whole-Body Time-of-Flight 18F-FDG PET/MRI Using a Deep Neural Network Trained with Simultaneously Reconstructed Activity and Attenuation Maps. Author: Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee DS, Lee JS. Journal: J Nucl Med; 2019 Aug; 60(8):1183-1189. PubMed ID: 30683763. Abstract: We propose a new deep learning-based approach to provide more accurate whole-body PET/MRI attenuation correction than is possible with the Dixon-based 4-segment method. We use activity and attenuation maps estimated using the maximum-likelihood reconstruction of activity and attenuation (MLAA) algorithm as inputs to a convolutional neural network (CNN) to learn a CT-derived attenuation map. Methods: The whole-body 18F-FDG PET/CT scan data of 100 cancer patients (38 men and 62 women; age, 57.3 ± 14.1 y) were retrospectively used for training and testing the CNN. A modified U-net was trained to predict a CT-derived μ-map (μ-CT) from the MLAA-generated activity distribution (λ-MLAA) and μ-map (μ-MLAA). We used 1.3 million patches derived from 60 patients' data for training the CNN, data of 20 others were used as a validation set to prevent overfitting, and the data of the other 20 were used as a test set for the CNN performance analysis. The attenuation maps generated using the proposed method (μ-CNN), μ-MLAA, and 4-segment method (μ-segment) were compared with the μ-CT, a ground truth. We also compared the voxelwise correlation between the activity images reconstructed using ordered-subset expectation maximization with the μ-maps, and the SUVs of primary and metastatic bone lesions obtained by drawing regions of interest on the activity images. Results: The CNN generates less noisy attenuation maps and achieves better bone identification than MLAA. The average Dice similarity coefficient for bone regions between μ-CNN and μ-CT was 0.77, which was significantly higher than that between μ-MLAA and μ-CT (0.36). Also, the CNN result showed the best pixel-by-pixel correlation with the CT-based results and remarkably reduced differences in activity maps in comparison to CT-based attenuation correction. Conclusion: The proposed deep neural network produced a more reliable attenuation map for 511-keV photons than the 4-segment method currently used in whole-body PET/MRI studies.[Abstract] [Full Text] [Related] [New Search]