These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electrochemiluminescence energy resonance transfer in 2D/2D heterostructured g-C3N4/MnO2 for glutathione detection.
    Author: Fu XL, Hou F, Liu FR, Ren SW, Cao JT, Liu YM.
    Journal: Biosens Bioelectron; 2019 Mar 15; 129():72-78. PubMed ID: 30684857.
    Abstract:
    The energy transfer efficiency, strongly depending on the distance of donor-acceptor pair, is always a crucial factor for the construction of elegant electrochemiluminescence resonance energy transfer (ECL-RET)-based biosensors. In this paper, a novel and efficient ECL-RET in 2D/2D heterostructured g-C3N4/MnO2 was developed using g-C3N4 nanosheets (g-C3N4 NSs) as energy donor and MnO2 nanosheets (MnO2 NSs) as energy acceptor. In this system, MnO2 NSs in-situ grew on g-C3N4 NSs to form the 2D/2D heterostructure, greatly shortening the distance of the donor-acceptor pair (g-C3N4-MnO2) and thus greatly enhancing the RET efficiency. To demonstrate the performance of the system, a signal "off-on" ECL sensor was designed for glutathione (GSH) analysis. In the absence of GSH, MnO2 significantly quenched the ECL intensity of g-C3N4 owing to ECL-RET in this 2D/2D g-C3N4/MnO2 heterostructure (ECL signal "off"). Upon the addition of GSH, MnO2 was reduced to Mn2+ by GSH and g-C3N4 was released from the heterostructured g-C3N4/MnO2, generating a recovery of ECL intensity (ECL signal "on"). Under the optimal conditions, the designed ECL-RET signal "off-on" sensor realized the sensitive detection of GSH ranged from 0.2-100 μM with the detection limit of 0.05 μM. Furthermore, the as-prepared ECL-RET sensor exhibits good performance in the determination of GSH in human serum samples. The ECL-RET in 2D/2D heterostructure provides an ingenious way for the exploitation of novel ECL biosensing systems.
    [Abstract] [Full Text] [Related] [New Search]