These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dynamic DNA methylation changes in the maternal oxytocin gene locus (OXT) during pregnancy predict postpartum maternal intrusiveness.
    Author: Toepfer P, O'Donnell KJ, Entringer S, Garg E, Heim CM, Lin DTS, MacIsaac JL, Kobor MS, Meaney MJ, Provençal N, Binder EB, Wadhwa PD, Buss C.
    Journal: Psychoneuroendocrinology; 2019 May; 103():156-162. PubMed ID: 30690225.
    Abstract:
    Maternal behavior (MB) is observable across mammals and represents an important feature of environmental variation during early postnatal development. Oxytocin (OT) plays a crucial role in MB. Even prior to childbirth, pregnancy induces epigenetic and other downstream changes in the maternal OT-system, likely mediated by the actions of steroid hormones. However, little is known about the nature and consequences of epigenetic modifications in the maternal OT-encoding gene (OXT) during pregnancy. Our study aims to investigate temporal dynamics of OXT promoter DNA methylation (DNAm) throughout pregnancy in predicting MB in humans. In 107 mother-child dyads, maternal OXT DNAm was serially analyzed in whole blood in early, mid and late pregnancy. MB was coded based on standardized mother-child interactions at six months postpartum. After controlling for cellular heterogeneity, race/ethnicity, age, and socioeconomic status, OXT-promoter DNAm exhibited a dynamic profile during pregnancy (b = 0.026, t=-3.37, p < .001), with decreases in DNAm from early to mid-pregnancy and no further change until late pregnancy. Moreover, dynamic DNAm trajectories of the OXT-promoter region predicted MB (intrusiveness) at six months postpartum (b = 0.006, t = 2.0, p < 0.05), with 6% higher OXT DNAm in late pregnancy in intrusive compared to non-intrusive mothers. We here demonstrate that OXT promoter DNAm changes significantly throughout gestation in peripheral blood and that these changes are associated with variability in MB, providing a novel potential biomarker predicting postnatal MB.
    [Abstract] [Full Text] [Related] [New Search]