These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exploiting defects in TiO2 inverse opal for enhanced photoelectrochemical water splitting.
    Author: Yew R, Karuturi SK, Liu J, Tan HH, Wu Y, Jagadish C.
    Journal: Opt Express; 2019 Jan 21; 27(2):761-773. PubMed ID: 30696157.
    Abstract:
    In this work, we report on defects generation in TiO2 inverse opal (IO) nanostructures by electrochemical reduction in order to increase photocatalytic activity and improve photoelectrochemical (PEC) water splitting performance. Macroporous structures, such as inverse opals, have attracted a lot of attention for energy-related applications because of their large surface area, interconnected pores, and ability to enhance light-matter interaction. Photocurrent density of electrochemically reduced TiO2-IO increased by almost 4 times, compared to pristine TiO2-IO photoelectrodes. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses confirm the presence of oxygen vacancies in electrochemically reduced TiO2-IO photoelectrodes. Oxygen vacancies extend the absorption of TiO2 from the UV to visible region. The incident photon-to-current efficiency (IPCE) increased by almost 3 times in the absorption (UV) region of TiO2 and slightly in the visible region. Impedance studies show improved electrical conductivity, longer photogenerated electron lifetime, and a negative shift of the flatband potential, which are attributed to oxygen vacancies acting as electron donors. The Fermi level shifts to be closer to the conduction band edge of TiO2-IO.
    [Abstract] [Full Text] [Related] [New Search]