These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Study of Phylogenetic Relationships Among Fusarium oxysporum f. sp. dianthi Isolates: Confirmation of Intrarace Diversity and Development of a Practical Tool for Simple Population Analyses. Author: Cañizares MC, Gómez-Lama C, García-Pedrajas MD, Pérez-Artés E. Journal: Plant Dis; 2015 Jun; 99(6):780-787. PubMed ID: 30699532. Abstract: Fusarium wilt, caused by Fusarium oxysporum f. sp. dianthi, is the most important disease of carnation worldwide. Knowing the diversity of the F. oxysporum f. sp. dianthi population present in a carnation growing area is a key component of preventing dramatic losses in production. Sequence analyses of partial β-tubulin, translation elongation factor 1α genes, and the full-length ribosomal DNA intergenic spacer (IGS) were conducted to resolve phylogenetic relationships in a wide collection of Spanish F. oxysporum f. sp. dianthi isolates, along with some representatives from Italy. We found that, among the three different gene regions, the IGS sequence was the best choice to resolve phylogenetic relationships among F. oxysporum f. sp. dianthi isolates. The phylogenetic tree generated with the complete IGS region was the only one showing a clear clustering of isolates according to the molecular group (virulence grouping) and the vegetative compatibility group. In order to develop a more practical tool based on a shorter DNA sequence to quickly analyze diversity in F. oxysporum f. sp. dianthi populations, we examined IGS nucleotide alignments and identified a region of approximately 300 bp that accumulates enough "informative" changes to resolve intraspecific relationships and determine pathogenic variants in F. oxysporum f. sp. dianthi. Moreover, the "condensed" alignment of this short IGS region showing only the informative positions revealed the existence of virulence group-discriminating positions. In addition to clarifying the phylogenetic relationships among F. oxysporum f. sp. dianthi isolates of the recently described race groups by using multigene genealogies, we have developed simple tools for the phylogenetic analyses of F. oxysporum f. sp. dianthi populations and the determination of the molecular group of uncharacterized F. oxysporum f. sp. dianthi isolates.[Abstract] [Full Text] [Related] [New Search]