These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: First Report of Black Leaf Mold of Tomato Caused by Pseudocercospora fuligena in Ohio.
    Author: Subedi N, Testen AL, Baysal-Gurel F, Miller SA.
    Journal: Plant Dis; 2015 Feb; 99(2):285. PubMed ID: 30699577.
    Abstract:
    Diseased tomato (Solanum lycopersicum L. cvs. Geronimo, Rebelski, and Big Dena) plants were received for diagnosis from a home gardener in Wayne County, Ohio, in August 2013 and from a 0.14-ha greenhouse in Brown County, Ohio, in September 2013. Approximately 10 and 60% of leaf area was diseased in the home garden and greenhouse, respectively. One or more lesions, each with an indistinct border, were observed on the leaves. Black fungal growth was observed on both sides of the leaf in association with the lesions. Microscopic examination revealed Cercospora-like conidia (2). Three symptomatic leaves from each location were surface-sterilized with 0.5% NaClO for 1 min and cultured on V8 juice agar medium at room temperature under continuous fluorescent lighting. One isolate was selected from each of Wayne Co. (SAM33-13) and Brown Co. (SAM34-13). The fungus produced small, dark-brown colonies within 2 weeks of plating. Mycelium was olive brown and septate, producing fascicles of conidiophores. Conidia were cylindrical, 2 to 14 septate, and 25.8 to 109.7 × 6.5 μm. Genomic DNA was extracted from colonies of isolate SAM33-13 grown on V8 juice agar medium using the Wizard SV Genomic DNA Purification System (Promega, Madison, WI). The internal transcribed spacer (ITS) region of rDNA was amplified by PCR using primer pair ITS1 and ITS4 (5), and the purified amplicon was sequenced (OARDC Molecular and Cellular Imaging Center, Wooster, OH). The ITS sequence was 99% identical to those of GenBank accessions of Pseudocercospora fuligena from Korea (JX290079) and Thailand (GU214675). The sequence was deposited in GenBank (KF931141). Based on morphology (4) and sequence analysis, the fungus was identified as P. fuligena (Roldan) Deighton (basionym Cercospora fuligena). To satisfy Koch's postulates, three 4-week-old tomato plants each of the cultivars L390 (AVRDC, Taiwan) and Mountain Spring (Siegers Seed Co., Holland, MI) were sprayed with a suspension of 1 × 103 conidia/ml of isolates SAM33-13 or SAM34-13 prepared from 3-week-old cultures growing on V8 juice agar medium. Three non-inoculated control plants were sprayed with sterilized water. Plants were maintained in a growth chamber at 25 to 30°C, 80% RH, and a 12 h/12 h day/night cycle. The first symptoms appeared 3 weeks after inoculation as light yellow foliar lesions. The lesions enlarged and turned black due to fungal growth, and the infected leaves dried. Disease severity was 70 and 10% of leaf area for cvs. L390 and Mountain Spring, respectively, for each isolate. Non-inoculated control plants were symptomless, and no fungus was re-isolated from the leaves. P. fuligena was isolated from symptomatic leaves of inoculated plants as described above, and the identity was confirmed based on morphology. In the United States, C. fuligena has not been reported infecting tomato since the first report in Florida in 1974 (1). To our knowledge, this is the first report of black leaf mold of tomato caused by P. fuligena in Ohio. Resistant cultivars, crop sanitation, and fungicides are recommended to manage the disease (3). References: (1) C. H. Blazquez and S. A. Alfieri. Phytopathology 64:443, 1974. (2) U. Braun. IMA Fungus 4:265, 2013. (3) R. Cerkauskas. AVRDC Publication 04-606, 2004. (4) B. Halfeld-Vieira et al. Fitopatol. Bras. 31:3, 2006. (5) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.
    [Abstract] [Full Text] [Related] [New Search]