These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CALB Immobilized onto Magnetic Nanoparticles for Efficient Kinetic Resolution of Racemic Secondary Alcohols: Long-Term Stability and Reusability. Author: Xing X, Jia JQ, Zhang JF, Zhou ZW, Li J, Wang N, Yu XQ. Journal: Molecules; 2019 Jan 30; 24(3):. PubMed ID: 30704049. Abstract: In this study, an immobilization strategy for magnetic cross-linking enzyme aggregates of lipase B from Candida antarctica (CALB) was developed and investigated. Magnetic particles were prepared by conventional co-precipitation. The magnetic nanoparticles were modified with 3-aminopropyltriethoxysilane (APTES) to obtain surface amino-functionalized magnetic nanoparticles (APTES⁻Fe₃O₄) as immobilization materials. Glutaraldehyde was used as a crosslinker to covalently bind CALB to APTES⁻Fe₃O₄. The optimal conditions of immobilization of lipase and resolution of racemic 1-phenylethanol were investigated. Under optimal conditions, esters could be obtained with conversion of 50%, enantiomeric excess of product (eep) > 99%, enantiomeric excess of substrate (ees) > 99%, and enantiomeric ratio (E) > 1000. The magnetic CALB CLEAs were successfully used for enzymatic kinetic resolution of fifteen secondary alcohols. Compared with Novozym 435, the magnetic CALB CLEAs exhibited a better enantioselectivity for most substrates. The conversion was still greater than 49% after the magnetic CALB CLEAs had been reused 10 times in a 48 h reaction cycle; both ees and eep were close to 99%. Furthermore, there was little decrease in catalytic activity and enantioselectivity after being stored at -20 °C for 90 days.[Abstract] [Full Text] [Related] [New Search]