These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fundamental noisy multiparameter quantum bounds. Author: Roy S. Journal: Sci Rep; 2019 Jan 31; 9(1):1038. PubMed ID: 30705319. Abstract: Quantum multiparameter estimation involves estimating multiple parameters simultaneously and can be more precise than estimating them individually. Our interest here is to determine fundamental quantum limits to the achievable multiparameter estimation precision in the presence of noise. We first present a lower bound to the estimation error covariance for a noisy initial probe state evolving through a noiseless quantum channel. We then present a lower bound to the estimation error covariance in the most general form for a noisy initial probe state evolving through a noisy quantum channel. We show conditions and accordingly measurements to attain these estimation precision limits for noisy systems. We see that the Heisenberg precision scaling of 1/N can be achieved with a probe comprising N particles even in the presence of noise. In fact, some noise in the initial probe state or the quantum channel can serve as a feature rather than a bug, since the estimation precision scaling achievable in the presence of noise in the initial state or the channel in some situations is impossible in the absence of noise in the initial state or the channel. However, a lot of noise harms the quantum advantage achievable with N parallel resources, and allows for a best precision scaling of [Formula: see text]. Moreover, the Heisenberg precision limit can be beaten with noise in the channel, and we present a super-Heisenberg precision limit with scaling of 1/N2 for optimal amount of noise in the channel, characterized by one-particle evolution operators. Furthermore, using γ-particle evolution operators for the noisy channel, where γ > 1, the best precision scaling attainable is 1/N2γ, which is otherwise known to be only possible using 2γ-particle evolution operators for a noiseless channel.[Abstract] [Full Text] [Related] [New Search]