These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Baghdadite nanoparticle-coated poly l-lactic acid (PLLA) ceramics scaffold improved osteogenic differentiation of adipose tissue-derived mesenchymal stem cells.
    Author: Karimi Z, Seyedjafari E, Mahdavi FS, Hashemi SM, Khojasteh A, Kazemi B, Mohammadi-Yeganeh S.
    Journal: J Biomed Mater Res A; 2019 Jun; 107(6):1284-1293. PubMed ID: 30706628.
    Abstract:
    Bone repair has been a new approach in regenerative medicine especially by application of stem cells. Discovering a suitable combination of scaffolds to stimulate osteogenesis is one of the major concerns in this issue. Porous polymeric scaffolds such as poly l-lactic acid (PLLA) have been attracted a lot of attention because of their biodegradability. In the present study, we have been coated Baghdadite on the plasma-treated surface of PLLA and evaluated osteogenic potential of mesenchymal stem cells (MSCs). Adipose tissue-derived mesenchymal stem cells (AD-MSCs) were cultured on PLLA and PLLA-Baghdadite scaffolds, and cell properties were characterized by MTT assay, scanning electron microscope, and FTIR analysis. Then, osteogenic differentiation potential of AD-MSCs has been investigated, such as alkaline phosphatase (ALP) activity, calcium mineral deposition, and the expression of bone-related genes (RUNX2, ALP, and OCN). The results have been indicated that calcium content and ALP activity of cells cultured on PLLA-Baghdadite nanofibers were higher than that of tissue culture polystyrenes (TCPs). Gene expression analysis showed that PLLA-Baghdadite had effectively induced osteogenesis-related genes. Taken together, these results suggest that porous nanofiber scaffolds which coated with Baghdadite can enhance osteogenic differentiation of AD-MSC, and PLLA-Baghdadite can be used as a new biodegradable scaffold for bone regeneration. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1284-1293, 2019.
    [Abstract] [Full Text] [Related] [New Search]